Search results for "extreme learning machine"
showing 10 items of 19 documents
Food Tray Sealing Fault Detection in Multi-Spectral Images Using Data Fusion and Deep Learning Techniques
2021
A correct food tray sealing is required to preserve food properties and safety for consumers. Traditional food packaging inspections are made by human operators to detect seal defects. Recent advances in the field of food inspection have been related to the use of hyperspectral imaging technology and automated vision-based inspection systems. A deep learning-based approach for food tray sealing fault detection using hyperspectral images is described. Several pixel-based image fusion methods are proposed to obtain 2D images from the 3D hyperspectral image datacube, which feeds the deep learning (DL) algorithms. Instead of considering all spectral bands in region of interest around a contamin…
A Douglas–Rachford method for sparse extreme learning machine
2019
Extreme Minimal Learning Machine
2018
Extreme Learning Machine (ELM) and Minimal Learning Machine (MLM) are nonlinear and scalable machine learning techniques with randomly generated basis. Both techniques share a step where a matrix of weights for the linear combination of the basis is recovered. In MLM, the kernel in this step corresponds to distance calculations between the training data and a set of reference points, whereas in ELM transformation with a sigmoidal activation function is most commonly used. MLM then needs additional interpolation step to estimate the actual distance-regression based output. A natural combination of these two techniques is proposed here, i.e., to use a distance-based kernel characteristic in M…
Deep CNN-ELM Hybrid Models for Fire Detection in Images
2018
In this paper, we propose a hybrid model consisting of a Deep Convolutional feature extractor followed by a fast and accurate classifier, the Extreme Learning Machine, for the purpose of fire detection in images. The reason behind using such a model is that Deep CNNs used for image classification take a very long time to train. Even with pre-trained models, the fully connected layers need to be trained with backpropagation, which can be very slow. In contrast, we propose to employ the Extreme Learning Machine (ELM) as the final classifier trained on pre-trained Deep CNN feature extractor. We apply this hybrid model on the problem of fire detection in images. We use state of the art Deep CNN…
Analysis of ventricular fibrillation signals using feature selection methods
2012
Feature selection methods in machine learning models are a powerful tool to knowledge extraction. In this work they are used to analyse the intrinsic modifications of cardiac response during ventricular fibrillation due to physical exercise. The data used are two sets of registers from isolated rabbit hearts: control (G1: without physical training), and trained (G2). Four parameters were extracted (dominant frequency, normalized energy, regularity index and number of occurrences). From them, 18 features were extracted. This work analyses the relevance of each feature to classify the records in G1 and G2 using Logistic Regression, Multilayer Perceptron and Extreme Learning Machine. Three fea…
Hardware implementation of real-time Extreme Learning Machine in FPGA: Analysis of precision, resource occupation and performance
2016
Extreme Learning Machine (ELM) on-chip learning is implemented on FPGA.Three hardware architectures are evaluated.Parametrical analysis of accuracy, resource occupation and performance is carried out. Display Omitted Extreme Learning Machine (ELM) proposes a non-iterative training method for Single Layer Feedforward Neural Networks that provides an effective solution for classification and prediction problems. Its hardware implementation is an important step towards fast, accurate and reconfigurable embedded systems based on neural networks, allowing to extend the range of applications where neural networks can be used, especially where frequent and fast training, or even real-time training…
Application of machine learning techniques to analyse the effects of physical exercise in ventricular fibrillation
2014
This work presents the application of machine learning techniques to analyse the influence of physical exercise in the physiological properties of the heart, during ventricular fibrillation. To this end, different kinds of classifiers (linear and neural models) are used to classify between trained and sedentary rabbit hearts. The use of those classifiers in combination with a wrapper feature selection algorithm allows to extract knowledge about the most relevant features in the problem. The obtained results show that neural models outperform linear classifiers (better performance indices and a better dimensionality reduction). The most relevant features to describe the benefits of physical …
Least-squares temporal difference learning based on an extreme learning machine
2014
Abstract Reinforcement learning (RL) is a general class of algorithms for solving decision-making problems, which are usually modeled using the Markov decision process (MDP) framework. RL can find exact solutions only when the MDP state space is discrete and small enough. Due to the fact that many real-world problems are described by continuous variables, approximation is essential in practical applications of RL. This paper is focused on learning the value function of a fixed policy in continuous MPDs. This is an important subproblem of several RL algorithms. We propose a least-squares temporal difference (LSTD) algorithm based on the extreme learning machine. LSTD is typically combined wi…
Moving Learning Machine Towards Fast Real-Time Applications: A High-Speed FPGA-based Implementation of the OS-ELM Training Algorithm
2018
Currently, there are some emerging online learning applications handling data streams in real-time. The On-line Sequential Extreme Learning Machine (OS-ELM) has been successfully used in real-time condition prediction applications because of its good generalization performance at an extreme learning speed, but the number of trainings by a second (training frequency) achieved in these continuous learning applications has to be further reduced. This paper proposes a performance-optimized implementation of the OS-ELM training algorithm when it is applied to real-time applications. In this case, the natural way of feeding the training of the neural network is one-by-one, i.e., training the neur…
Extreme minimal learning machine: Ridge regression with distance-based basis
2019
The extreme learning machine (ELM) and the minimal learning machine (MLM) are nonlinear and scalable machine learning techniques with a randomly generated basis. Both techniques start with a step in which a matrix of weights for the linear combination of the basis is recovered. In the MLM, the feature mapping in this step corresponds to distance calculations between the training data and a set of reference points, whereas in the ELM, a transformation using a radial or sigmoidal activation function is commonly used. Computation of the model output, for prediction or classification purposes, is straightforward with the ELM after the first step. In the original MLM, one needs to solve an addit…